Evolution of dynamic combinatorial chemistry.

نویسندگان

  • Fabien B L Cougnon
  • Jeremy K M Sanders
چکیده

Since its inception in the mid-1990s, dynamic combinatorial chemistry (DCC), the chemistry of complex systems under thermodynamic control, has proved valuable in identifying unexpected molecules with remarkable binding properties and in providing effective synthetic routes to complex species. Essentially, in this approach, one designs the experiment rather than the molecule. DCC has also provided us with insights into how some chemical systems respond to external stimuli. Using examples from the work of our laboratory and others, this Account shows how the concept of DCC, inspired by the evolution of living systems, has found an increasing range of applications in diverse areas and has evolved conceptually and experimentally. A dynamic combinatorial library (DCL) is a thermodynamically controlled mixture of interconverting species that can respond to various stimuli. The Cambridge version of dynamic combinatorial chemistry was initially inspired by the mammalian immune system and was conceived as a way to create and identify new unpredictable receptors. For example, an added template can select and stabilize a strongly binding member of the library which is then amplified at the expense of the unsuccessful library members, minimizing the free energy of the system. But researchers have exploited DCC in a variety of other ways: over the past two decades, this technique has contributed to the evolution of chemistry and to applications in the diverse fields of catalysis, fragrance release, and responsive materials. Among these applications, researchers have built intricate and well-defined architectures such as catenanes or hydrogen-bonded nanotubes, using the ability of complex chemical systems to reach a high level of organization. In addition, DCC has proved a powerful tool for the study of complex molecular networks and systems. The use of DCC is improving our understanding of chemical and biological systems. The study of folding or self-replicating macrocycles in DCLs has served as a model for appreciating how complex organisations such as life can emerge from a pool of simple chemicals. Today, DCC is no longer restricted to thermodynamic control, and new systems have recently appeared in which kinetic and thermodynamic control coexist. Expanding the realm of DCC to unexplored and promising new territories, these hybrid systems show that the concept of dynamic combinatorial chemistry continues to evolve.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase-transfer dynamic combinatorial chemistry.

A two-phase approach to dynamic combinatorial chemistry is described using disulfide exchange chemistry; the use of two phases significantly increases the possibilities and the scope of dynamic combinatorial chemistry by facilitating the combination of otherwise incompatible building blocks.

متن کامل

Generation and Screening of Ditopic Dynamic Combinatorial Libraries

Dynamic Combinatorial Chemistry (DCC) is a new supramolecular concept that extends beyond static combinatorial chemistry towards adaptive chemical systems. This concept relies on reversible interchange between sets of basic components to generate continually interconnecting adducts, giving access to dynamic combinatorial libraries (DCLs) comprising all possible combinations of the components av...

متن کامل

Evolutionary approaches for the discovery of functional synthetic small molecules*

Directed evolution is a powerful method for the laboratory discovery of nucleic acids and proteins with desired functional properties. A hallmark of this approach is the iterative translation, selection, amplification, and diversification of genetic information. The potential of evolutionary methods to impact the discovery of synthetic small molecules has recently been explored by a variety of ...

متن کامل

A Statistical Mechanical Approach to Combinatorial Chemistry

An analogy between combinatorial chemistry and Monte Carlo computer simulation is pursued. Examples of how to design libraries for both materials discovery and protein molecular evolution are given. For materials discovery, the concept of library redesign, or the use previous experiments to guide the design of new experiments, is introduced. For molecular evolution, examples of how to use ``bia...

متن کامل

Simultaneous Disulfide and Boronic Acid Ester Exchange in Dynamic Combinatorial Libraries

Dynamic combinatorial chemistry has emerged as a promising tool for the discovery of complex receptors in supramolecular chemistry. At the heart of dynamic combinatorial chemistry are the reversible reactions that enable the exchange of building blocks between library members in dynamic combinatorial libraries (DCLs) ensuring thermodynamic control over the system. If more than one reversible re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Accounts of chemical research

دوره 45 12  شماره 

صفحات  -

تاریخ انتشار 2012